요약

정렬BestAverageWorstIn-placeStable
선택OX
삽입OO
버블OO
OX
병합XO
OX
기수XO

1. 정렬(Sort)

  • 정렬: 레코드(키+필드)를 키의 순서대로 재배열하는 작업

    • 모든 경우에 최적인 정렬 알고리즘은 없음
    • 데이터의 형식, 수, 크기에 따라 적합한 방법 선택
  • 레코드(record): 하나의 데이터 단위

    • 키(key): 정렬 기준이 되는 필드
    • 필드(field): 레코드를 구성하는 각각의 정보 항목

1.1. 정렬 관련 용어

  • 우수한 정렬 알고리즘의 성질

    • 제자리 정렬(in-place): 입력 배열 외에 추가 메모리를 거의 사용하지 않는 정렬
    • 안정 정렬(stable): 같은 키 값을 가진 레코드들의 상대적 순서가 유지되는 정렬
  • 모든 데이터가 메모리에 올라오는가?

    • 내부 정렬: 모든 레코드가 메인 메모리에 올라와 있는 정렬
    • 외부 정렬: 대부분의 데이터가 외부 기억 장치에 있고, 일부만 메모리에 올라와 있는 대규모 정렬
  • 가정: 본 장에서는 정수형 키를 가진 1차원 배열을 오름차순으로 정렬하는 경우를 다룹니다.

2. 비교 정렬(comparison)

2.1.

(1) 선택 정렬(selection)

  • step: 1 to n-1
  • comp: (step에 따라, 항상) n-1 to 1
  • swap: O (제자리 정렬)
void selection_sort(int arr[], int n) {
    for (int i = 0; i < n-1; i++) {
        int min = i;
        for (int j = i+1; j < n; j++)
            if (arr[j] < arr[min]) min = j;
        swap(&arr[i], &arr[min]);
    }
}

(2) 삽입 정렬(insertion)

  • step: 2 to n
  • min_comp: 1
  • max_comp: (step에 따라) 1 to (n-1)
  • swap: O (제자리 정렬)
void insertion_sort(int arr[], int n) {
    for (int i = 1; i < n; i++) {
        int j = i;
        while (j > 0 && arr[j-1] > arr[j]) {
            swap(&arr[j], &arr[j-1]);
            j--;
        }
    }
}

(3) 버블 정렬(bubble)

  • step: 1 to n-1
  • min_comp: 1
  • max_comp: (step에 따라) (n-1) to 1
  • swap: O (제자리 정렬)
void bubble_sort(int arr[], int n) {
    for (int i = 0; i < n-1; i++)
        for (int j = 0; j < n-1-i; j++)
            if (arr[j] > arr[j+1])
                swap(&arr[j], &arr[j+1]);
}

2.2.

(1) 병합 정렬(merge)

  • 분할 정복(divide and conquer)
    • 분할: 분할 비용
    • 정복/병합: 각 recursion depth()마다 병합 비용
    • 시간 복잡도:
    • 공간 복잡도: 병합 시 정렬된 배열을 따로 생성하는 비제자리 정렬
void merge_sort(int arr[], int low, int high) {
    if (low < high) {
        int mid = (low+high)/2;
        merge_sort(arr, low, mid);
        merge_sort(arr, mid+1, high);
        merge(arr, low, mid, high);
    }
}
 
void merge(int arr[], int l, int m, int r) {
    int n1 = m-l+1, n2 = r-m;
    int L[100], R[100]; // subarray L, R
    for (int i = 0; i < n1; i++) L[i] = arr[l + i];
    for (int i = 0; i < n2; i++) R[i] = arr[m + 1 + i];
    
    int i = 0, j = 0, k = l;
    while (i < n1 && j < n2)
        arr[k++] = (L[i] <= R[j]) ? L[i++] : R[j++]; // 조건?참:거짓
    while (i < n1) arr[k++] = L[i++]; // 남은 배열 소진
    while (j < n2) arr[k++] = R[j++]; // 남은 배열 소진
}

(2) 퀵 정렬(quick)

  • comp: n

  • recursion depth: (best) ~ (worst: pivot이 min/max일 때)

    • median of three: pivot을 왼쪽, 가운데, 오른쪽 중 중간값으로 사용
  • swap: O (제자리 정렬)

  • 불안정 정렬

  • 알고리즘

    1. 좌우에서 포인터를 이동시키며, 피벗보다 큰 값·작은 값을 교환
    2. 두 포인터가 교차하면 분할 완료
void quick_sort(int arr[], int low, int high) {
    if (low < high) {
        int pivot = partition(arr, low, high);
        quick_sort(arr, low, pivot-1);
        quick_sort(arr, pivot+1, high);
    }
}
 
int partition(int arr[], int low, int high) {
    int pivot = arr[high];
    int i = low;
    for (int j = low; j < high; j++) {
        if (arr[j] < pivot) swap(&arr[i++], &arr[j]);
    }
    swap(&arr[i], &arr[high]);
    return i;
}
  • 퀵 정렬 라이브러리 함수
    • qsort(): C 기본 라이브러리 제공, 함수 포인터로 비교 함수를 전달하며 내부적으로 퀵 정렬 계열 알고리즘을 사용

(3) 힙 정렬(heap)

  • 힙 자료구조를 이용하여 정렬하는 방식

    • 최대 힙(max heap): 루트가 최댓값이 되도록 구성
    • 시간 복잡도: 모든 경우
    • 공간 복잡도: (제자리 정렬)
    • 불안정 정렬
  • 작동 방식

    1. 배열을 최대 힙으로 구성 (build heap)
    2. 루트(최댓값)와 마지막 원소 교환 후 힙 크기 줄임
    3. 다시 힙 재정렬(heapify) 반복

3. 비비교 정렬(non-comparison)

3.1. 기수 정렬(radix)

  • 비교 기반 정렬의 한계를 넘어, 키의 자리수(digit)에 따라 “버킷(bucket)”에 분배한 뒤 다시 모으는 과정을 반복하는 방식입니다.

  • LSD(Least Significant Digit) 방식: 가장 낮은 자리수부터 높은 자리수 순으로 안정적 정렬

  • MSD(Most Significant Digit) 방식: 가장 높은 자리수부터 낮은 자리수 순으로 분할 정복

for (d = 0; d < max_digits; d++) {
    // 각 원소를 d번째 자리수 값에 따라 10개의 큐에 분배
    distribute(a, buckets, d);
    // 버킷 순서대로 a[]에 다시 복귀
    collect(a, buckets);
}
  • 시간 복잡도: O(dn), 실제 d(자릿수)가 작아 선형 시간에 가까움
  • 특징
    • 버킷 방식으로 안정성을 만족
    • 버킷(추가 큐)로 인한 비제자리 정렬
    • 한정된 키 타입(동일 길이 숫자, 단순 문자 등)에만 적용 가능

4. 함수 포인터

  • 비교 기준을 함수 포인터로 전달하여, 다양한 기준으로 동일한 정렬 알고리즘을 적용할 수 있는 기법입니다.
  • Lab 9.1: 2차원 좌표 구조체에 대해 x-좌표, y-좌표, 거리 기준 등 다양한 비교 함수를 구현하고, 삽입 정렬이나 qsort()에 전달하여 정렬
int x_ascend(Element a, Element b) { // x 오름차순
	return (b.x - a.x);
}
int y_descend(Element a, Element b) { // y 내림차순
	return (a.y - b.y);
}
int z_ascend(Element a, Element b) { // 크기의 오름차순
    return ((b.x * b.x + b.y * b.y) - (a.x * a.x + a.y * a.y));
}
 
void insertion_sort_fn(Element A[], int n, int(*f)(Element, Element)) {
    for (int i = 1; i < n; i++) {
        Element key = A[i];
        int j;
        for (j = i - 1; j >= 0; j--) {
            if (f(A[j], key) < 0) A[j + 1] = A[j];
            else break;
        }
        A[j + 1] = key;
    }
}
 
void main() {
    Element list[9] = {
	    {6,6}, {7,4}, {2,3}, {1,5}, {5,2}, {3,3}, {9,4}, {1,8}, {5,3}
	};
    insertion_sort_fn(list, 9, x_ascend);
    insertion_sort_fn(list, 9, y_descend);
    insertion_sort_fn(list, 9, z_ascend);
}